

C1058: DISTILLERY WALK APARTMENTS - MIDLETON

DRAINAGE IMPACT ASSESSMENT REPORT

For CORK COUNTY COUNCIL

3 May 2024

NOTICE

This document has been produced by O'Connor Sutton Cronin & Associates for its client, CORK COUNTY COUNCIL. It may not be used for any purpose other than that specified by any other person without the written permission of the authors.

DOCUMENT CONTROL & HISTORY

OCSC Job No: C1058	Project Code	Originator	Zone Volume	Level	File Type	Role Type	Number	Status / Suitability Code	Revision
	C1058	ocsc	XX	XX	RP	С	0003	S4	P02

Rev.	Status	Authors	Checked	Authorised	Issue Date
P02	S4	Anett Bognar- Nemeth	John McBeath	John McBeath	3/05/2024

CONTENTS

1	INTRODUCTION	1
	1.1. APPOINTMENT	1
	1.2. PROPOSED DEVELOPMENT	2
	1.3. TOPOGRAPHYCAL SURVEY	2
	1.4. EXISTING SURFACE WATER DRAINAGE	2
	1.5. SITE INVESTIGATION 1.5.1. EXISTING GEOLOGY AND GROUNDWATER VULNERABILITY	4 4
	1.5.2. INFILTRATION CAPACITY	6
	1.5.3. FLOOD RISK AND PREDICTIVE FLOOD EXTENT MAPPING	7
2	SURFACE WATER DRAINAGE STRATEGY	8
		8
	2.1.1. METHOD OF DESIGN	8
	2.2. PROPOSED SUDS STRATEGY	8
	2.2.1. OVERVIEW OF STRATEGY	8
	2.3. PROPOSED SURFACE WATER DRAINAGE NETWORK	10
	2.3.1. COMPLIANCE WITH GDSDS SURFACE WATER DRAINAGE POLICY	10
	2.3.2. STORMWATER PIPE DESIGN	12
	2.3.3. PRE-DEVELOPMENT CONDITIONS	13
	2.4. PROPOSED SUDS MEASURES	15
	2.4.1. SUDS SELECTION	15
	2.4.2. PROPOSED SELECTED SUDS SYSTEMS	16
	2.4.3. HYDRAULIC DESIGN OF SUDS MEASURES	18
3	MAINTENANCE REGIME	21
4	FLOODING	
5	CONCLUSION AND RECOMMENDATION	27
6	VERIFICATION	

APPENDICES

APPENDIX A LAYOUT	EXISTING AND PROPOSED DRAINAGE- AND WATERMAIN
APPENDIX B	FOUL WATER DESIGN CALCULATIONS
APPENDIX C	STORM WATER DESIGN CALCULATIONS
APPENDIX D	SUSTAINABLE URBAN DRAINAGE SYSTEMS
APPENDIX E	FLOOD MAPS

LIST OF FIGURES

Figure 1.1: Site location	1
Figure 1.2: Below ground utility survey drawing - Existing storm sewer (marked in green colour)	3
Figure 1.3: GSI bedrock mapping (Source: www.gsi.ie)	4
Figure 1.4: GSI groundwater resources map (Source: www.gsi.ie)	5
Figure 1.5: GSI groundwater recharge mapping (Source: www.gsi.ie)	6
Figure 2.1: Basic BMP control selection chart (Figure 48, Section 6.5, Volume 3 of GDSDS)	15
Figure 2.2: Completed table for selecting nature based solutions	16
Figure 2.3: Proposed site layout	18
Figure 3.1: Guidance on the maintenance requirements for filter strips	21
Figure 3.2: Guidance on the maintenance requirements for trees	22
Figure 3.3: Guidance on the maintenance requirements for filter drains	22
Figure 3.4: Guidance on the maintenance requirements for swale	23
Figure 3.5: Guidance on the maintenance requirements for pervious pavement	24

LIST OF TABLES

Table 1.1: Site investigation - Percolation test results	7
Table 2.1: Assessment of drainage desing	. 11
Table 2.2: Surface water design criteria	. 12
Table 2.3: Climate change factors	. 14

1 INTRODUCTION

1.1. APPOINTMENT

O' Connor Sutton Cronin (OCSC) & Associates Ltd have been commissioned by the Cork County Council to prepare a Drainage Impact Assessment to inform the planning application for a proposed new multi-storey apartment block, at Distillery Walk, Midleton, Co Cork.

The objective of this Drainage Impact Assessment is to outline the methodologies relating to the management of surface water runoff for the proposed development.

Refer to Figure 1.1 for the site location.

Figure 1.1: Site location

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT 3 May 2024 Rev P02

1.2. PROPOSED DEVELOPMENT

The project involves the construction of 16no. housing units and a community room on an existing walled garden site off Distillery Lane, in Midleton's town centre. The housing scheme has been designed as a 6no. storey apartment building with 3no. one bed units on each floor except the ground floor which contains a community room and a single one bed apartment. The development will have the capacity to cater for 2 ppl per unit, total 32 residents.

The intention is that this housing scheme would be allocated to accommodate elderly residents specifically. The remainder of the site is designed as a public garden space that also allows for management of storm water drainage on the site.

This subject site has been identified by Cork County Council's Housing Directorate as a key site within the town suitable for redevelopment. It is rectangular in shape and enclosed on all sites by a tall stone wall, approximately 6m. high. It measures 0.109Ha (0.27 acres) in area and is relatively flat. The subject site is in the ownership of Midleton Lions Club. It is bounded to the north by a private apartment development and by public lanes / access ways on the remaining 3no. sides.

1.3. TOPOGRAPHYCAL SURVEY

The site is relatively flat brownfield site at approximately 3.4m OD, typically varying from a lowest level of 3.29m OD in the middle of the eastern part of the site to 3.61m OD on the slightly higher western side of the site.

There is a 3.5-4m high wall surrounding the site. Distillery Walk runs south-west north-east to the south of the site, and continues from the site to the west, connecting to Main St. There is a lane parallel to the south of Distillery Walk and is approximately 500-600mm lower. There is a car park to the southeast of the site which gradually drops in elevation going south towards the Dungourney River. As Distillery Walk goes west from the site (3.6mOD) it also drops in elevation until it meets Main St (3.11mOD).

1.4. EXISTING SURFACE WATER DRAINAGE

Cork County Council were contacted to establish the existing storm water sewer network in the vicinity of the proposed development and a below ground utility survey was undertaken on the grounds of the site. The survey extents include a portion of Corabbey Court running along the northern and eastern boundaries and a portion of a lane running along the south boundary of the site. The found pipelines and the associated manholes/AJ's/gullies is marked in green in Figure 1.2 oveleaf.

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT The survey drawing indicates that there is an existing 100-225mm diameter PVC sewer serving the residential apartments to the north, running from west to east to the north of the site. This sewer then transitions to a 300mm diameter concrete pipe along the eastern boundary towards Distillery Walk to the south. Additionally, there is an existing manhole located outside at the southwest corner of the site and a 450mm diameter concrete pipe running from south to north across the western side of the site. Following a discussion with the Local Area Engineers, it has been suggested that the existing storm pipe crossing the site may be an old industrial line, necessitating further investigation before tying into it. A CCTV survey will be sought as part of the next stage to clarify its condition and viability for connection. Please refer to Appendix A for the below ground utility survey drawing.

Figure 1.2: Below ground utility survey drawing - Existing storm sewer (marked in green colour)

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT 3 May 2024 Rev P02

1.5. SITE INVESTIGATION

Ground investigation has been carried out as part of the initial design. IGSL Ltd. were appointed to complete a ground investigation and to determine the depths of the overburden and underlying strata and to provide all necessary information for design purposes including the infiltration capacity (percolation rate) of the existing ground.

The requested main works included 3 No. trial pits, 2 No of which are also to be used as soak pits. The soakaway tests were conducted in accordance with BRE Digest 365 guidance document. The results of that are discussed in Section 1.5.2 below. There are 4 No. exploratory boreholes requested across the site, to establish the depths of each strata, their strengths and permeability and the natural ground water levels.

1.5.1. EXISTING GEOLOGY AND GROUNDWATER VULNERABILITY

The Geological Survey of Ireland's (GSI) website provides information on the existing geology and groundwater condition and vulnerability via their public online mapping service.

Bedrock

Figure 1.3 below indicates the bedrock geology of the subject site. The area is underlaid by massive, unbedded lime-mudstone with the formation of Waulsortian limestone.

Figure 1.3: GSI bedrock mapping (Source: www.gsi.ie)

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT 3 May 2024 Rev P02 As part of the geotechnical ground investigation works, the boreholes findings were consistent with sandy gravel deposits noted below the superficial topsoil. The depth of the gravel strata varied, ranging from about 12 to 15 metres, with no bedrock encountered.

• Groundwater

The GSI (Geological Survey of Ireland) has devised a system for classifying the aquifers of Ireland. The aquifer classification depends on a number of parameters including, the aerial extent, well yield, specific capacity, aquifer transmissivity and groundwater flow. The aquifer categories are intended to describe both resource potential (Regionally or Locally important, or Poor) and groundwater flow type and attenuation potential (through fissures, karst conduits or intergranular). The aquifer code is made up of the aquifer resource value and how the groundwater flows in the bedrock or sand & gravel aquifer.

There is a regionally important karstified aquifer (Rkd) described in the area of the site. Refer to Figure 1.4 below. Rkd aquifers are those in which flow is more diffuse, storage is higher, there are many high yielding wells, and development of bored wells is less difficult. These areas also have caves and large springs, but the springs have a more regular flow.

Figure 1.4: GSI groundwater resources map (Source: www.gsi.ie)

Groundwater vulnerability represents the natural ground characteristics that determine the ease with which groundwater may be contaminated by human activities. The GSI maps assigns the vulnerability category to a site or an area is thus based on the relative ease with which infiltrating water and potential

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT contaminants may reach groundwater in a vertical or sub-vertical direction. As all groundwater is hydrologically connected to the land surface, it is the effectiveness of this connection that determines the relative vulnerability to contamination.

The website classifies the aquifer vulnerability in the region of the subject site as extreme with category 'E'. This category means that the depth of subsoil is 1.5m over locally important sand and gravel aquifer.

	Pacharma	IE GSL and Path AOK 4076
	Unique ID	IE_03I_gwkcri_40K_4070
The site	Effective Rainfall (mm/yr)	679
	Vulnerability Category	E
	Vulnerability Description	Extreme
	Subsoil Permeability Code	N/A
	Subsoil Permeability Description	Not applicable, DTB<3m
	Soil Drainage	Made
	Subsoil	Made
	Zoom to	

Figure 1.5: GSI groundwater recharge mapping (Source: www.gsi.ie)

1.5.2. INFILTRATION CAPACITY

The rate at which infiltration occurs largely depends on the soil properties and underlying geology through which the water is discharged. The capacity of the soil to infiltrate water is given by the infiltration coefficient, which is the long-term infiltration rate into the soil divided by the area of infiltration, which is related to the soil's permeability.

The site investigation report noted that ground water ingress was observed in each borehole at about 3.00m BGL with a standing water level at 1.60-1.70m BGL recorded.

The BRE Digest 365 tests have confirmed a high infiltration rate indicating that the gravel stratum is suitable for dispersion of surface water. The results are contained in Table 1.1 overleaf.

Reference	Infiltration rate (m/min)		
SA 01 (Trial pit 01)	0.00848		
SA 02 (Trial pit 02)	0.01513		

Please refer to Appendix A for the infiltration test results extracted from the site investigation report.

1.5.3. FLOOD RISK AND PREDICTIVE FLOOD EXTENT MAPPING

A separate Flood Risk Assessment report has been conducted for the proposed development in the planning application pack. Refer to document no. C1058-OCSC-XX-XX-RP-C-0001-S4-P01 Flood risk Assessment.

2 SURFACE WATER DRAINAGE STRATEGY

2.1. DESIGN CONSIDERATIONS

The surface water system for this development has been designed in accordance with the requirements of the following documents:

- CIRIA report C753 Sustainable Urban Drainage Strategy (SuDS) Manual
- Greater Dublin Strategic Drainage Strategy (GDSDS)
- Cork County Council Development Plan 2022-2028
- Cork County Council Advice Note 1 Surface Water Management

2.1.1. METHOD OF DESIGN

Design of storm water drainage network is included in separate documentation included in this planning application. Refer to document no. C1058-OCSC-XX-XX-RP-C-0002-S4-P01 for the Engineering Services Report.

The proposed surface network is designed to cater for surface water runoff generated from the roof of the building and from the adjoining access ramp and ground floor terrace. The storm water drainage elements on the subject lands are designed in accordance with IS EN 752 & the Building Regulations Part H.

SuDS drainage design shall be developed as a first preference and in accordance with the SuDS hierarchy. Surface water generated from the paths in the landscaping area will be conveyed through a swale as part of the SuDS measures as outlined in this report and attenuated before being discharged at Q bar greenfield runoff rate to the existing storm sewer. SuDS design for the proposed development is discussed under Section 2.2 and 2.3 within this document.

2.2. PROPOSED SUDS STRATEGY

2.2.1. OVERVIEW OF STRATEGY

The SuDS Manual (CIRIA Report C753) is the current best practice guidance which promotes sustainable water management through the use of SuDS. The four main objectives of a successful SuDS, are described in the SuDS Manual as follows:

- Water quantity: maintaining flows and volumes to match the rainfall characteristics before development;

- **Water quality**: preventing and treating pollution to ensure that clean water is available to provide amenity and biodiversity, and also to protect natural watercourses;
- Amenity: enhancing people's quality of life through an integrated design;
- Biodiversity: maximising the potential for wildlife through design and management of SuDS.

The SuDS manual identifies a "management train" for an interconnected system design that describes the sequence of components to control the runoff, the flow rates and to reduce contaminants to acceptable levels. There are 6 specific functions, which includes:

- Rainwater harvesting systems;
- Pervious surfacing systems;
- Infiltration systems;
- Conveyance systems;
- Storage systems;
- Treatment systems.

The purpose of the above hierarchy is that all new developments must ensure that a comprehensive SuDS is incorporated into the development. SuDS requires that post development run-off rates are maintained at equivalent or lower levels than pre-development levels. The development must be able to retain, within its boundaries, storm water volumes from extreme storm events up to a probability of 1 in 100 years, more commonly expressed as a 1.0% AEP (Annual Exceedance Probability). Any new development must have the physical capacity to retain storm water volumes and, if necessary, release these attenuated surface water volumes to an outfall at a controlled flow rate. A further component of the SuDS protocols is to increase the overall water quality of surface water runoff before it enters a natural water course or into a public sewer, which ultimately discharges to a water body. This is to ensure the highest possible standard of storm water quality and to prevent degradation of the water course resource by contamination.

Objective WM 11-10 of the Cork County Development Plan 2022 includes that the applied SuDS measures should mitigate flood risk, enhance biodiversity, protect, and enhance visual and recreational amenity. Nature-based solutions are preferred to be considered in the first instance in arriving at the preferred SuDS solution for any development.

2.3. PROPOSED SURFACE WATER DRAINAGE NETWORK

The main surface water drainage pipe from the building is proposed to discharge to the existing public drainage network. Surface water will be collected via a series of rainwater down pipes from the roof of the building, channel drains and gullies from the access ramp and from the terrace and will be discharging into the onsite underground attenuation tank. From here surface water will be released via a flow controlled hydro break to the public storm sewer. Outflow from the site will be restricted to green field runoff rate at 3.9 l/s. The proposed surface water network will consist of a new gravity fed sewer system designed in accordance with IS EN 752. The pipes of the main sewer will be uPVC and will vary from 150mm to 225mm in diameter.

In addition to the above, 150mm diameter PVC filter drains underlaying the permeable paved paths is proposed to discharge the stormwater into a wet swale channel in the middle landscaping area. Catchpits are proposed to be installed at each of the outlet into the swale from the filter drain to avoid sediments entering the swale. Refer to further details in section 3.2.3. of this document.

The Surface Water drainage layout is shown on drawing C1058-OCSC-XX-XX-DR-C-0100 in Appendix A with surface water design calculations provided in Appendix C.

2.3.1. COMPLIANCE WITH GDSDS SURFACE WATER DRAINAGE POLICY

The proposed drainage network was designed using the rational method for calculating peak storm water runoff. The value of Q is dependent on the intensity of the rainfall, which changes based on the intensity of the storm from which it came from.

Generally, drainage systems will be designed to handle the 5-year storm at a minimum, and the 100-year storm at the maximum. The 5 year-storm is a storm that has a 20% probability of occurring in a given year, for a given area, and the 100-year storm is a storm that has a 1% probability of occurring in a given year, for a given area. The 5-year and 100-year storms produce different Q values, generally denoted as Q5 and Q100 respectively, and these peak flows are used for the design of the systems that transport the runoff from these events.

The surface water pipe length, slopes including invert levels, pipe diameters were entered for the calculation. These parameters are also shown on the proposed drainage layout in Appendix C of this document.

The site's surface water management network has been designed in accordance with the GDSDS, Vol. 2, section 6.3.4 Table 6.3 requirements for the assessment of the design criteria.

Refer to Table 2.1 below for the assessment of the drainage proposal according to the design criteria.

Criteria	Objective	Assessment for proposed
		development
1	Return Period <1-year	
River water	1.1 Interception storage of at least 5mm, and	
quality	preferably 10mm, of rainfall where runoff to the	Satisfied by providing
protection	receiving water can be prevented	stormwater attenuation and by
	1.2 Where initial runoff from at least 5mm of rainfall	SuDS features i.e. swale,
	cannot be intercepted, treatment of runoff	attenuation tank at surface
	(treatment volume) is required. Retention pond (if	water discharge point
	used) to have minimum pool volume equivalent to	
	15mm rainfall.	
2.	Return Period 1-year	
River regime	2.1 Discharge rate equal to 1-year greenfield site	
protection	peak runoff rate or 2l/s/ha, whichever is the	
	greater. Site critical duration storm to be used	Satisfied by providing
	to assess attenuation storage volume.	stormwater attenuation tank
	Return Period 100-year	designed for 1 in 100-year event
	2.2 Discharge rate equal to 1 in 100-year	with 20% climate factor applied
	greenfield site peak runoff rate. Site critical	
	duration storm to be used to assess	
	attenuation storage volume.	
3.	Return Period 30-year	Satisfied by providing
Level of	3.1. No flooding on site except where specifically	stormwater attenuation tank
service	planned flooding is approved. Summer design	designed for 1 in 100-year event
(flooding) for	storm of 15 or 30 minutes are normally critical.	with 20% climate factor applied.
the site	Return Period 100-year	Satisfied as the finished floor
	3.2. No internal property flooding. Planned flood	level has been set to be above
	routing and temporary flood storage	the 1:100 year event with
	accommodated on site for short high intensity	additional freeboard and climate
	storms. Site critical duration events.	change allowance (i.e.discussed
	Return Period 100-year	under Flood Risk Assessment
		report from the proposed

Table 2.1: Assessment of drainage desing

	 3.3. Floor levels at least 500mm above maximum river level and adjacent onsite storage retention. Return Period 100-year 3.4. No flooding of adjacent urban areas. Overland flooding managed within the development. 	development issued separate to this document)
4. River flood protection (criterion 4.1, or 4.2 or 4.3 to be applied)	 Return Period 100-year 4.1. "Long-term" floodwater accommodated on site for development runoff volume which is in excess of the greenfield runoff volume. Temporary flood storage drained by infiltration on a designated flooding area brought into operation by extreme events only. 100-year, 6 hour duration storm to be used for assessment of the additional volume of runoff. Return Period 100-year 4.2. Infiltration storage provided equal in volume to "long term" storage. Usually designed to operate for all events. 100year, 6 hour duration storm to be used for assessment of the additional volume of runoff. Return Period 100-year 4.3. Maximum discharge rate of QBAR or 2 l/s/ha, whichever is the greater, for all attenuation storage where separate "long term" storage cannot be provided. 	Satisfied by providing stormwater attenuation tank designed for 1 in 100-year event with 20% climate factor applied. Also, satisfied by addressing flood risk associated with the 1 in 100-year storm

2.3.2. STORMWATER PIPE DESIGN

The proposed surface water drains have been designed in accordance with the GDSDS Section 6.5. The below inputs sourced mainly from Met Eireann and the from Volume 2 of the GDSDS are used in the development of the drainage design.

Parameter criteria	Surface water sewers	Assessment for proposed development
Minimum depth	1.2m under highways, 0.9m	No vehicular traffic within site. Depth of cover
	cover elsewhere	varies. Where min depth of 0.9m cannot be
		achieved, pipe will be encased in min 150mm
		thick concrete according to IW standard details.

Table 2.2: Surface water design criteria

Man day and the state	NL	Marcal and the second design of One
Maximum depth	Normally 5m	Max depth is not more than 1.3m
Minimum sewer size	225mm	Satisfied by providing 225mm storm water pipe
Runoff factors for pipe	100% paved and roof	Satisfied by discharging the water from the roof
sizing	structures, 0% off pervious	and hard surfaces into the new sewer and
	surfaces	discharging the surface water from pervious
		surface into the swale. Refer to proposed
		drainage drawing.
Rainfall for initial pipe	50mm/hr rainfall intensity	Storm sewer has been designed for greater than
sizing		50mm/hr -refer to calculations in Appendix C
Minimum velocity (pipe	1.0m/s	The minimum full velocity in the proposed 225mm
full)		pipe is 1.30m/s
Flooding	Checks made for adequate	Satisfied as the finished floor level has been set
	protection *	to be above the 1:100-year event with additional
	No flooding for return period	freeboard and climate change allowance (for
	less than 30 years except	assessment of flooding refer to Flood Risk
	where explicitly planned.	Assessment report from the proposed
	Simulation modelling is	development issued separate to this document)
	required for sites greater than	
	24ha**	
Roughness factor (ks)	0.6	Satisfied within this design, refer to design
		calculation in Appendix C.

The proposed surface water drainage network was assessed for compliance with maximum and minimum velocities, pipe lengths, etc. The network was designed to ensure velocities in the network and pipe gradients did not exceed the maximum velocity of 3.0m/s.

The layout of the proposed storm water network is shown on drawing no. C1058-OCSC-XX-XX-DR-C-0100 in Appendix A.

2.3.3. PRE-DEVELOPMENT CONDITIONS

<u>River regime protection</u>

One of the relevant design criteria for the protection of the river regime is that the rate of discharge to the receiving water must be retained to that of greenfield runoff for the site.

The calculation of the greenfield runoff rate of the area of the proposed development was conducted using the estimation method in the Institute of Hydrology Report No. 124: flood estimation for small catchments, as follows:

Qbar (m³/s) = 0.00108 × (0.01×AREA)^{0.89} × SAAR^{1.17} × SPR^{2.17}

where,

- AREA = sub catchment area (m2).
- SAAR = standard annual average rainfall (mm/yr).
- SPR = standard percentage runoff coefficient for the applicable SOIL category in the sub catchment area.

Where the area of the site is less than 50ha, the formula should be applied for a 50ha and the result factored based on the ratio of the actual site area and the applied area (50ha). The SOIL category is measure of winter rainfall acceptance potential, as a percent of rainfall. Soils are classified from S1 to S5 based on runoff potential. S1 has a low runoff value of 0.1 while S5 has a higher runoff potential, 0.53.

The hydrological characteristics of the region are:

Total site Area=0.109ha, of which the hardstanding area is 0.04ha

SAAR=1306mm/yr (based on rainfall data from Met Eireann, Roches Point SWS., see in Appendix D)

SOIL TYPE: 3 ->SPR=0.37

The greenfield runoff rate has been calculated as Qbar=5.96l/s/ha.

Allowable discharge rate is based on the total hardstanding area: Qallow=5.96l/s/ha*0.044ha=0.66l/s

The run-off rate calculated for the proposed development exceeds the allowable discharge rate, therefore SuDS design will need to include attenuation storage that will fill during rainfall events.

• Climate change

The GDSDS Climate Change policy document advises that rainfall event depths should be factored by minimum of 10%. Refer to Table 2.3 below for the advised climate change factors.

Climate change category	Characteristics
River flows	20% increase in flows for all return periods up to 100 years
Sea level	400+mm rise (see Climate Change policy document for sea levels as a function of return period)
Rainfall	10% increase in depth (factor all intensities by 1.1)
	Modify time series rainfall in accordance with the GDSDS climate change policy document

Table 2.3: Climate change factors

Using the above formula for the runoff rate for the subject site, the attenuation tank has been designed for a 100-year return period as well as an additional 20% climate change factor, satisfying the GDSDS hydraulic criterion 1-4 and the application of the climate change factor presented in Table 2.3 above, and also satisfying the County Development Plan 2022. Please refer to Appendix C for surface water sewer and to Appendix D for attenuation tank design calculations.

2.4. PROPOSED SUDS MEASURES

2.4.1. SUDS SELECTION

The SuDS selection process used for this site is in accordance with SuDS selection flow chart, Volume 3, Section 6.5, figure 48 of the GDSDS. The characteristics of the site are utilised to select the various SuDS technique that would be applicable are indicated in red outline below. Refer to Figure 2.1 below for the selection matrix applied for the proposed development.

Figure 2.1: Basic BMP control selection chart (Figure 48, Section 6.5, Volume 3 of GDSDS)

The SuDS selection process used for this site has been also carried out in accordance with the requirements Cork County Council Development Plan 2022 Advice Note 1 Surface Water Management December 2022.

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT Please refer to Figure 2.2 below for the site-specific SUDS selection hierarchy sheet. The completed sheet is also included in Appendix D of this document.

TABLE 4 CORK COUNTY CO	UNCIL SUDS SELEC	TION HIERARCHY SH	HEET FOR LARGE-	SCALE
DEVELOPMENT A	ND AGRICULTURAL	DEVELOPMENT		
SuDS Measures	Measures to be used on site	Rational for selecting / not selecting measure	Area of feature (m ²)	Attenuation volume of feature (m ¹) (see No. 8)
Source Control	-	-	-	1.000
Providing storage at sour	ce			
Swales	YES	INFFECTIV) SPACE AVAILABLE	AVENUX 172m	MPPRIM QV
Integrated constructed tree pits	YES	MITHATE SURFACE WATER BURGET AND INCREASE TRANSPIRATION		
Rainwater Butte	NO .	HISDFTICERT SPACE AVAILABLE AS &	10000 × (1000 10	
Downpipe Planters	YES	100 FICENT SPACE WAILABLE AT SW	LICWS-SL	
Rainwater Harvesting	NO	NOT VINELE CUE TO SMALL WIEM OF		
Soakaways	ND	INTERVICENTICE TO VESTIMALITY	r	
Infiltration trenches	ND	INSUFFICIENT DUE TO ILLERABILITY	f	
Permeable pavement (Grasscrete, Block Paving, Porous Asphalt etc)	VES	INFRACENT WITH SWALE AS A MARKED COMPARENCE OF SUID FRACTURE INFRACE WATER CAN BE DISCHARED ONTO WALES FROM PERVICES PAYORIES VIA PLTM DRAME		
Green Roofs	NO	NOT VANEE DIE TREMME ANGA OF		
Green wall	NO	NOT FEASIBLE DUE TO PROXIMITY		
Filter strips	YES	RECURED AS THE THEAT WENT OF H	hOH-	
Bio-retention	YES	NO RETEXTION THE PITS	1.0	
Blue Roofs	NO	NET VINEL DUE TO SMALL AREA OF		
Filter Drain	YES	SUFFICIENT FOR WATER TO BE DRICK	All(23	
Site Control		T THE PROPERTY COMPANY CONTRACTOR	NGA1	
Detention Basins	ND	PROPOSED DWALE TUNCTION AL		
Retention basins	NO	NOT SUFFICIENT DISE TO GROWING WE	29	
Regional Control		Endor, torserverunt		
Ponds	NO	NOT FOMILE		
Wetlands	NO	WATTYEARBLE		-
Other				
Petrol/Oli Interceptor/Grit Trap	ND:	ACT REQUIRED AS THEM WELL IN AD VEHICULAR TRAFTIC WITHIN THE 11TE NO.N.CARDIN		
Attenuation tank – only as a last resort where other measures are not feasible	YES.	INDUCE DIFFECTIVE TO GRAMMATINE D RUNDER BALL FOR ROUTLAS RETURN PERSONAL TANDER & DEMILING RATING AND RUNDER RUNDER		
Oversized pipes- only as a last resort where other measures are not- feasible	NO	ACTENDATION FAILS (LESING) AS		
Other				

Figure 2.2: Completed table for selecting nature based solutions

2.4.2. PROPOSED SELECTED SUDS SYSTEMS

There are a number of systems available to address the SuDS requirements for the new developments according to the Cork County Development Plan 2022.

The proposed surface water network will include a storm drainage pipe network, attenuation storage and nature-based SuDS features which will aid the reduction of runoff volumes by slowing surface water flows, providing the opportunity for evapotranspiration, and providing the opportunity for infiltration to ground.

It is proposed that, as a minimum, the following mechanisms have been considered and incorporated into the SuDS surface water management regime:

Tree Pits

Tree pits provide a nature-based solution for the treatment and disposal of surface water for low flow events. It is proposed that a number of tree pits will be designed to act as bioretention mechanisms, providing additional storage within their subbase. The soils arounds the trees will aid in filtering pollutants while also reducing the volume of surface water discharged to the attenuation tank. Tree pits are proposed in the green spaces adjacent to car parking, simultaneously providing amenity value to the development.

<u>Attenuated Storage</u>

Attenuation storage tank is proposed to be provided in the form of a reinforced concrete underground storage tank for events up to and including the 1.0% AEP rainfall with a climate change allowance of 20%. The minimum storage capacity of the tank is 25m3. As a result of a consultation with the Local Area Engineer, concrete attenuation tanks are preferred in the East Cork area due to the karst limestone nature of the ground conditions, as opposed to the plastic attenuation tanks, as they have been known to puncture and drain into the soft limestone sub strata causing eventual subsidence.

<u>Hydro-brake</u>

It is proposed to provide a hydro-brake at the outfall of the surface water network before connecting to the existing sewer to restrict the outflow of water from the site. The hydro-brake will be fitted with a pull cord bypass and a penstock valve installed on the inlet to the manhole for maintenance purposes.

Permeable paving

Pervious pavement will be provided for the eastern, southern and western paths around the swale.

• Downpipe planter

There is an approx. 700mm wide, 1.1m high raised planter proposed at the southern boundary along the entrance ramp as an astatic solution to manage the flow of rainwater from the roof through the downpipe.

<u>Swale</u>

A vegetated swale (conveyance channel) is proposed to be constructed running in the middle part of the landscaping area. Refer to Figure 2.3 overleaf for the proposed site layout. The swale will be a shallow landscaped depression (approx. 0.6m deep) and will be utilised to convey surface water flows.

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT

Figure 2.3: Proposed site layout

It is proposed that the swale will receive runoff from the hard surface areas to the north with filter strip being constructed along the path for pre-treatment and it will receive rainwater via filter drains laid under the permeable paved paths along the southern boundary. The wetland planting including trees and shrubs are proposed around that will enhance the biodiversity of the area and will provide a visual experience to the amenity space for the community.

Filter strips

Filter strip is a linear feature that is designed to treat runoff from path with impervious pavement proposed to the north of the swale along the northern boundary used as pre-treatment component before the swale. Filter strips can be effectively incorporated into the landscaping and will support biodiversity.

<u>Catch pits</u>

Catch pits in the form of small chambers will also be provided upstream of all filter drain inlets to the swale to prevent silt and debris entering to the swale causing buildup and blockages in the channel.

Landscape/Green Areas

Green areas have been provided wherever possible which will reduce the overall quantity of surface water runoff from the site.

2.4.3. HYDRAULIC DESIGN OF SUDS MEASURES

Swale

To meet the CIRIA SuDS manual 2015, a trapezoidal cross section with a bottom width of 0.5m and a depth of 0.6m with side slopes of 1:3 proposed to resist erosion and has been considered for hydraulic design. The swale to be designed for a maximum velocity of 1.0 m/s. The hydraulic flow velocity has been calculated by using the Manning's equation:

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT 3 May 2024 Rev P02 The hydraulic radius (R) has been calculated as the cross-sectional area of the swale divided by the wetted perimeter. The cross-sectional area is taken as 0.85m², and the wetted perimeter is 3.61m. It is important to note that a freeboard of 100mm at the top and a 150mm constant water level at the bottom was taken into account and was conservatively omitted from the calculation of the cross-sectional area.

The hydraulic radius is calculated as R=0.238. The average longitudinal gradient or slope (S) of the swale is considered 1.5% (0.015). The Manning's roughness coefficient (n) is taken as 0.3 for grassed channel. Grass/ vegetation has greater resistance when compared with hard standing surfaces, therefore it generates lower flow velocities and flow rates in the channel. Attenuation of peak flows is better achieved in grassed/ vegetated surface water channels and consequently the rate of discharge of runoff into the receiving sewer/watercourse is significantly slowed down.

The hydraulic capacity of the swale has been calculated 0.157m/s which is less than the maximum allowable velocity of 1.0m/s, therefore the proposed swale with its parameters is adequate.

A 225mm outlet is proposed at the lowest point of the swale, situated above the consistent water level, to facilitate the discharge of any excess water into the attenuation tank. This overflow therefore mitigating the risk of flooding in heavy rainfall events.

• Filter drain

Permeable pavement with porous surface materials is considered for a section of the paths around the inner landscape area. A perforated drain is proposed to be laid under the permeable pavement that will collect the water and discharge it into the swale. Six intermediate inlets indicated that are proposed to discharge surface water from the permeable paved path into the swale.

The approximately area of the permeable surface is 0.02ha. Dividing that area by the 6no. of inlets, the area for an inlet is 0.003ha. It is proposed to install 150mm diameter PVD filter drains. Based on the rainfall data and the granular soil properties under the permeable pavement, the allowable outflow is 0.014l/s/inlet. The flow into the swale is less than the flow capacity in the swale therefore the proposed inlets are adequate. A filter drain laid in a 0.5m deep, 1.5m wide, 50m long pervious filter strip area has a storage capacity of 2.2m3. It's important to note that the attenuation tank was conservatively designed to store water from all hardstanding areas (roof and tarmac path) including the permeable paved area as well as if it has no storage volume.

<u>Attenuated Storage</u>

An underground concrete attenuation storage tank is proposed at the lowest point of the site before the discharge point to the existing storm sewer. The tank is sized to cater for events up to and including the 1.0% AEP rainfall (100-years) with a climate change allowance of 20%, while assuming a discharge rate of Qbar=5.96l/s. The allowable outflow is Qallow=0.66l/s. The attenuation tank was conservatively designed to store water from all hardstanding areas, not just from the roof and tarmac path, but including the permeable

paved area as well as if it has no storage volume. Therefore, the minimum storage capacity of the tank is proposed to be 26m³.

As a result of a consultation with the Local Area Engineer, concrete attenuation tanks are preferred in the East Cork area due to the karst limestone nature of the ground conditions, as opposed to the plastic attenuation tanks, as they have been known to puncture and drain into the soft limestone sub strata causing eventual subsidence.

A sketch of the proposed SuDS systems with the initial calculations can be found in Appendix D to the rear of this report.

3 MAINTENANCE REGIME

The proposed development does not involve construction of a new access road, or car park, etc. The following maintenance regime is recommended to be included in the project safety file at handover stage.

• Filter strips

Maintenance of the filter strips is relatively straight forward for landscape contractors. Providing landscape management is required at the site, including the filter strip maintenance. Refer to Figure 3.1 below for the typical maintenance requirements for filter strips according to Table 15.1 of the SuDS manual.

Maintenance schedule	Pequired action	Typical frequency
Maintenance schedule	Required action	Typical frequency
	Remove litter and debris	Monthly (or as required)
	Cut the grass – to retain grass height within specified design range	Monthly (during growing season as required
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as require
Regular maintenance	Inspect filter strip surface to identify evidence of erosion, poor vegetation growth, compaction, ponding, sedimentation and contamination (eg oils)	Monthly (at start, then half year)
	Check flow spreader and filter strip surface for even gradients	Monthly (at start, then half year
	Inspect gravel flow spreader upstream of filter strip for clogging	Monthly (at start, then half year
	Inspect silt accumulation rates and establish appropriate removal frequencies	Monthly (at start, then half year
Occasional maintenance	Reseed areas of poor vegetation growth; alter plant types to better suit conditions, if required	As required or if bare soil is exp over > 10% of the filter strip area
	Repair erosion or other damage by re-turfing or reseeding	As required
	Relevel uneven surfaces and reinstate design levels	As required
Remedial actions	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required
	Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required
	Remove and dispose of oils or petrol residues using safe standard practices	As required

Figure 3.1: Guidance on the maintenance requirements for filter strips

Tree Pits & Trees

Regular inspection of tree pits and tree condition including inlets/outlets is to be undertaken by the client. Maintenance requirements for the trees will be greatest during the first five years, when tree is becoming

established. Any invasive or excessive vegetation is to be removed and trees are to receive additional irrigation during prolonged dry periods. Landscape architect to advise regarding appropriate irrigation schedules. Maintenance responsibility for a tree pit or planter should always be placed with an appropriate organisation. Refer to Figure 3.2 below for the typical maintenance requirements for filter strips according to Table 19.3 of the SuDS manual.

BLE	Operation and maintenance requirements for trees (after CRWA, 2009)					
9.3	Maintenance schedule	Required action	Typical frequency			
		Remove litter and debris	Monthly (or as required)			
	Regular maintenance	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)			
		Inspect inlets and outlets	Inspect monthly			
		Check tree health and manage tree appropriately	Annually			
	Occasional maintenance	Remove silt build-up from inlets and surface and replace mulch as necessary	Annually, or as required			
		Water	As required (in periods of drought)			
	Monitoring	Inspect silt accumulation rates and establish appropriate removal frequencies	Half yearly			

Figure 3.2: Guidance on the maintenance requirements for trees

• Filter drains

Regular inspection and maintenance is important for the effective operation of filter drains. Maintenance responsibility for a filter drain should always be placed with an appropriate organisation. Litter and debris removal should be undertaken as part of the general landscape maintenance. Sediments collected in catchpits from upstream discharge should be removed and appropriately disposed. Refer to Figure 3.3 below for the typical maintenance requirements for filter strips according to Table 16.1 of the SuDS manual.

ABLE	Operation and maintenance requirements for filter drains						
16.1	Maintenance schedule	Required action	Typical frequency				
		Remove litter (including leaf litter) and debris from filter drain surface, access chambers and pre-treatment devices	Monthly (or as required)				
	Regular maintenance	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly				
		Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly				
		Remove sediment from pre-treatment devices	Six monthly, or as required				
		Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (eg NJUG, 2007 or BS 3998:2010)	As required				
	Occasional maintenance	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required				
		Clear perforated pipework of blockages	As required				

Figure 3.3: Guidance on the maintenance requirements for filter drains

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT

<u>Swale</u>

Regular inspection and maintenance is important for the effective operation of the swale. Maintenance responsibility for a swale should always be placed with an appropriate organisation. Litter and debris removal should be undertaken as part of the general landscape maintenance. Mowing of grass should retain grass length of 75-150mm across the slopes, to assist in filtering the pollutants and retaining sediments and to reduce the risk of flattening during runoff events. For wet swale, as what is proposed for this development, mowing of wetland vegetation is not required. However, harvesting of very dense vegetation may be desirable in the autumn after plant die-back, to prevent the discharge of excess organic material into receiving waters. Refer to Figure 3.4 below for the typical maintenance requirements for swales according to Table 17.1 of the SuDS manual.

Operation and maintenance requirements for swales					
Maintenance schedule	Required action	Typical frequency			
	Remove litter and debris	Monthly, or as required			
	Cut grass – to retain grass height within specified design range	Monthly (during growing season) or as required			
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required			
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly			
Regular maintenance	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for > 48 hours	Monthly, or when required			
	Inspect vegetation coverage	Monthly for 6 months, quarterly 2 years, then half yearly			
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly			
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	As required or if bare soil is exposed over 10% or more of the swale treatment area			
	Repair erosion or other damage by re-turfing or reseeding	As required			
	Relevel uneven surfaces and reinstate design levels	As required			
Remedial actions	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required			
	Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required			
	Remove and dispose of oils or petrol residues using safe standard practices	As required			

Figure 3.4: Guidance on the maintenance requirements for swale

• Attenuated Storage

All attenuation tanks are to be inspected and maintained in accordance with the manufacturer's requirements. At a minimum the tank is to be inspected monthly for the first 3 months following commissioning. There after inspections are to be undertaken annually. Debris should be removed monthly

for the relevant catchment area and silt traps are to be inspected monthly and sediment build up cleaned as required. The inside of the tank should be surveyed as per the manufacturer's requirements and sediment build up washed out as required.

Hydro break

The hydro break manhole is to be inspected monthly for the first 3 months of operation and bi-annually thereafter. Any blockages or debris build ups are to be removed.

Pervious pavement

Regular inspection and maintenance is important for the effective operation of filter drains. Maintenance responsibility for a filter drain should always be placed with an appropriate organisation. Before handover to the client, it should be inspected for clogging, litter, weeds, and water ponding. After handover, it should be inspected regularly, preferably during and after heavy rainfall to check effective operation and to identify any areas of ponding. Refer to Figure 3.5 below for the typical maintenance requirements for pervious pavement according to Table 20.15 of the SuDS manual.

Operation and maintena	nce requirements for pervious paver	nents
Maintenance schedule	Required action	Typical frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based or site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacen impermeable areas as this area is most likely to collect the most sediment
	Stabilise and mow contributing and adjacent areas	As required
Occasional maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
	Initial inspection	Monthly for three months after installation
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Figure 3.5: Guidance on the maintenance requirements for pervious pavement

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT 3 May 2024 Rev P02 Pervious pavements need to be regularly cleaned of silt and other sediments to preserve their infiltration capacity. Sweeping once per year should be sufficient for most sites, however inspection report should inform on the frequency to suit the site. A brush or suction cleaner should be used for regular sweeping; however, care should be taken in adjusting vacuuming equipment to avoid removal of jointing material. Any lost material should be replaced.

Maintenance Plan and schedules should be developed for all of the above-mentioned SuDS measures and landscaping areas on the site. Specific maintenance needs should be monitored and maintenance schedule to be adjusted to suit requirements.

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT

4 FLOODING

With reference to Distillery Walk Apartments, Midleton - Flood Risk Assessment Report – O1058-OCSC-XX-XX-RP-C-0001-S4-P01 - Issued 13 February 2024, OCSC Consulting Engineers investigated the publicly available information in relation to flooding in the Midleton area. Following review of the Arup Flood Maps developed for the Midleton Flood Relief Scheme and the Midleton flooding event of October 18th, 2023, it is proposed to set the finished floor level at 4.22m, to ensure it remains above the current 1:1000-year fluvial flood level with additional climate change and freeboarding allowance at the site. Please refer to Flood Risk Assessment report as a separate document within the planning package for full details.

5 CONCLUSION AND RECOMMENDATION

A Drainage Impact Assessment of the proposed development has been carried out. Apart from the new storm water sewer design, the proposed SuDS measures include a swale, filter strip, filter drain under permeable pavement, tree pits, landscaping areas with raised planter, as well as an underground attenuation tank with hydro-brake as outflow control structure. The maximum storm water outflow from the proposed network is 5.96l/s.

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT

6 VERIFICATION

This report was compiled and verified by:

Anett Bognar-Nemeth BSc (Hons), MEng (Hons) Civil & Structural Project Engineer O'Connor Sutton Cronin & Associates

DISTILLERY WALK APARTMENTS - Midleton DRAINAGE IMPACT ASSESSMENT REPORT 3 May 2024 Rev P02

Appendix A TOPOGRAPHICAL SURVEY

et THE	proved by Y hecked by Y	
Site Survey at Midleton, Co.Cork.	CON Y	
ing Title:	Scale:	
2D Topographical Survey ITM	1:200	

Soakaway Design f -value from field tests (F2C) IGSL							
Contract:	Distillery La	ne Midleton	Contract No.	25097			
Test No.	SA01 (at T	201)					
Client	Cork Count						
Date:	06/12/20	23					
Summary of	of ground co	nditions		0			
trom	to	Description		Ground water			
0.00	0.30			Test pit dry to			
0.30	1.00	Grey brown slightly clayey fine to coarse GRAVEL		1.4m (rapid water			
1.00	1.40			trial nit TP1 at			
				1.5m)			
Notes:				,			
Field Data		Field Test					
FIEIO Data		<u>ried rest</u>					
Depth to	Elapsed	Depth of Pit (D)	1.40	m			
Water	Time	Width of Pit (B)	0.50	m			
(m)	(min)	Length of Pit (L)	2.00	m			
		_					
0.70	0.00	Initial depth to Water =	0.70	m			
0.75	1.00	Final depth to water =	1.40	m			
0.78	2.00	Elapsed time (mins)=	30.00				
0.81	3.00	Tan of normality and					
0.85	4.00	I op of permeable soll		m			
0.89	5.00	Base of permeable soli		m			
0.92	6.00	_					
0.90	7.00	_					
1.03	9.00	_					
1.03	10.00	Base area=	1	m2			
1.12	11.00	*Av. side area of permeable stratum over test perior	1.75	m2			
1.16	12.00	Total Exposed area =	2.75	m2			
1.22	13.00						
1.25	14.00						
1.29	15.00	Infiltration rate (f) = Volume of water used/ur	nit exposed area	/ unit time			
1.33	20.00						
1.35	25.00	f= 0.00848 m/min or	0.0001414	m/sec			
1.40	30.00						
		Depth of water vs Elapsed Time (mins)					
	35.00			7			
1	⊣ 30.00		•	-			
			^				
	20.00		•	_			
	1 10.00	· · · · ·	•	_			
5.00							
	0.00	· · · ·					
	0.00	0.50 1.00	1	.50			
	Depth to Water (m)						

Soaka	way [Des	ign f	-value	from f	ield test	S	(F2C) IGSL
Contract:	Distillery I	Lane	Midleton				Contract No.	25097
Test No.	SA02 (at	TP02	2)					
Client	Cork Cour	nty C	ouncil					
Date:	06/12/2	2023						
Summary of	of ground	condi	tions					
from	to			Description				Ground water
0.00	0.30		Topsoil					Test pit dry to
0.30	1.00		Grey brown fir	ne to coarse	slightly cla	ey GRAVEL		1.2m (rapid water
1.00	1.20		Grey fine to c	oarse sandy	GRAVEL			ingress in adjacent
								trial pit TP2 at
N1 1								1.5m)
Notes:								
Field Data					Field Test			_
Depth to	Elapse	d			Depth of F	Pit (D)	1.20	m
Water	Time				Width of P	it (B)	0.50	m
(m)	(min))			Length of	Pit (L)	2.00	m
								7
0.75	0.00				Initial dept	h to Water =	0.75	m
0.79	1.00				Final dept	n to water =	1.20	m
0.84	2.00				Elapsed tir	ne (mins)=	14.00	
0.88	3.00						r	-
0.91	4.00				Top of per	meable soil		m
0.95	5.00				Base of pe	rmeable soil		m
0.99	6.00							
1.03	7.00							
1.05	8.00							
1.08	9.00				_			٦ _
1.10	10.00)			Base area	=	1	m2
1.13	11.00)	*Av. side area	of permeabl	le stratum (over test perio	1.125	m2
1.14	12.00)			Total Expo	sed area =	2.125	m2
1.17	13.00)						
1.20	14.00)	L. Cilture tile	- (f)	\/_l			(
			inflitration rat	e(1) =	volume of	water used/u	nit exposed area	/ unit time
			f=	0.01513	m/min	or	0.0002521	m/sec
			Depth	of water vs l	Elapsed Tin	ne (mins)		
	16.00 _							_
	14 00							
	SE						•	
	E ^{12.00} +						•	
	ĕ 10.00 ↓						•	_
<u>۽</u> ۲							•	
5	8 0.00 +					•	•	
	g 6.00 +					•		_
						•		
	ч.00 					•		
	2.00 +					•		
	0.00				· · · · ·	• •		
	0.0	0	0.20	0.40 0.	.60 0.	80 1.00	1.20	1.40
				Depth	n to Water	(m)		

Appendix B BELOW GROUND UTILITY SURVEY

7	8	9	10	11	12	

7	8	9	10	11	12

Appendix C SURFACE WATER DESIGN CALCULATIONS

									DATE.							
Distillery La	ne Apa	tments, Midleton,	Co. Cork				JOB NO: C1058		DATE: 23/11/21	Pipe Ks	: 0.6	mm		00	SC.	
TITLE:							CALCS BY	:	CHECK'D:	Те	: 4	mins		EPEEDNINDER - SAJ MARTINE CIPLINARY CO	TIEN-CREININ	
STORM SE	WERC	APACITY CALCS	6				ABN		CM	Desigi Storm	י 5	years				
	Pipe Se	ection	U/S Level (m)	D/S Level (m)	Length (m)	Slope (1:X)	Pipe Diameter (mm)	Pipe Capacity (I/s)	Full Velocity (m/s)	T _{pipe} (mins)	Tc (mins)	Rainfall Intensity, i (mm/hr)	Imp Area (Ha)	Cum. Imp Area (Ha)	Flow (Q = 2.71Ai) (l/s)	Adequate Capacity?
SWMH 01	to	SWMH 02	3.12	2.95	17	100	225	51.93	1.31	0.22	4.22	93.04	0.02	0.02	3.78	~
SWMH 02	to	SWMH 03	2.95	2.90	5	100	225	51.93	1.31	0.06	4.28	91.95	0.0005	0.02	3.86	~
SWMH 03	to	SWMH 04	2.9	2.84	6	100	225	51.93	1.31	0.08	4.36	90.69	0.0005	0.016	3.93	~
SWMH 04	to	SWMH 05	2.84	2.8	4	100	225	51.93	1.31	0.05	4.41	89.87	0.03	0.044	10.72	~
SWMH 05	to	SWMH 06	2.8	2.55	25	100	225	51.93	1.31	0.32	4.73	85.15	0.00	0.044	10.15	✓
SWMH 06	to	SWMH 07	2.55	2.38	17	100	225	51.93	1.31	0.22	4.94	82.29	0.00	0.044	9.81	~
SWMH 07	to	SWMH 08	2.38	2.375	0.5	100	225	51.93	1.31	0.01	4.95	82.21	0.00	0.044	9.80	~
SWMH 08	to	ATT. TANK	2.375	2.37	0.5	100	225	51.93	1.31	0.01	4.96	82.13	0.00	0.044	9.79	✓
ATT. TANK	to	EXISTING MH	1.92	1.90	2	100	225	51.93	1.31	0.03	4.98	81.81	0.00	0.044	9.76	~

JOB NAME: Distillery Lane Apartments TITLE:	, Midleton, C	Co. Cork				JOB NO: C1058 CALCS BY: ABN		DATE: 22/01/24 CHECK'D: CM	Pipe Ks: Te: Design Storm	0.6 4 5	mm mins	O'CONNO NORTH F NORTH F NEW MAI CORK. Tel: 021 2	OR SUTTON CROI POINT HOUSE POINT BUSINESS LOW ROAD		
SWALE - OUTFLOW PIPI Pipe Section	E CAPACIT	<u>Y CHECH</u> U/S Level (m)	< D/S Level (m)	Length (m)	Slope (1:X)	Pipe Diameter (mm)	Pipe Capacity (I/s)	Full Velocity (m/s)	T _{pipe} (mins)	Tc (mins)	Rainfall Intensity, i (mm/hr)	Imp Area (Ha)	Cum. Imp Area (Ha)	Flow (Q = 2.71Ai) (I/s)	Adequate Capacity?
Swale outflow to SW	/MH-08	2.85	2.375	2	4	225	255.32	6.42	0.01	4.01	96.90	0.02	0.02	13.40	*

Project:	Distillery Lane Apartments				O'CONNOR SUTTON	N CRONIN SE
Project No.:	C1058	\odot	0	0	NORTH POINT BUS	INESS PARK D
Calculation:	Attenuation 100-year	QUALITY 13. IN 10 YOU, 2010		100	CORK.	0
Calcs By:	ABN	NOAI Certified	NSAI Certified	ASAI Contilled	Tel: 021 2355816	OCONNOR
Checked By:	JMcB		19-11	É.		MALEY REVISED IN
Date:	22/01/2024		The Constant			

 Site Location:
 Midleton

 Design Storm Return Period:
 100 years

 Climate Change Factor:
 20 %

 Total Area of pervious pavement:
 0.02 ha

 Hardstand Area:
 0.02 ha

0.02 ha

Soakaway Design - To BRE Digest 365			
Infiltration Coefficient from Percolation Test		0.011805 m/min	average value from SI report
Soil Infiltration Rate	f	1.97E-04 m/s	Infitration Coefficeint / F
Length	L	50 m	length of filter drain
Effective Depth	D _e	0.5 m	
Porosity of Fill Material	n	0.95	
Width	W	1.5 m	width of paved path
Internal Surface Area @ 50% Depth	a _{s50%}	25.75 m	

REQUIRED STORAGE:

Effective Impermeable Area A_D:

2.176 m³

DIMENSIONS (L x W x H):

50.000m x 2.000m x 0.50m

O CONNOR - SUTTON - CRONIN

Duration	Rainfall 100- Year	Rainfall 100- Year with CCF	Inflow	Outflow	Required Storage	Volume Provided	Optimum (Size to ensure P>S)	Time of emptying half storage volume
			1	0	S	Р	= P - S	t _{s50%}
(min)	(mm)	(mm)	(m ³)	(m ³)	(m ³)			(hrs)
2	0.0	0.0	0.000	0.608	-0.608	35.625	36.233	-0.02
5	15.4	18.5	3.696	1.520	2.176	35.625	33.449	0.06
10	21.5	25.8	5.160	3.040	2.120	35.625	33.505	0.06
15	25.3	30.4	6.072	4.560	1.512	35.625	34.113	0.04
30	31.6	37.9	7.584	9.119	-1.535	35.625	37.160	-0.04
60	39.4	47.3	9.456	18.239	-8.783	35.625	44.408	-0.24
120	49.2	59.0	11.808	36.477	-24.669	35.625	60.294	-0.68
180	56.0	67.2	13.440	54.716	-41.276	35.625	76.901	-1.13
240	61.3	73.6	14.712	72.955	-58.243	35.625	93.868	-1.60
360	69.8	83.8	16.752	109.432	-92.680	35.625	128.305	-2.54
540	79.5	95.4	19.080	164.149	-145.069	35.625	180.694	-3.98
720	87.2	104.6	20.928	218.865	-197.937	35.625	233.562	-5.43
1080	99.2	119.0	23.808	328.297	-304.489	35.625	340.114	-8.35
1440	108.8	130.6	26.112	437.729	-411.617	35.625	447.242	-11.28
2880	124.8	149.8	29.952	875.459	-845.507	35.625	881.132	-23.18
4320	138.3	166.0	33.192	1313.188	-1279.996	35.625	1315.621	-35.09
5760	150.1	180.1	36.024	1750.918	-1714.894	35.625	1750.519	-47.01
8640	170.9	205.1	41.016	2626.376	-2585.360	35.625	2620.985	-70.88
11520	189.3	227.2	45.432	3501.835	-3456.403	35.625	3492.028	-94.75
14400	206.0	247.2	49.440	4377.294	-4327.854	35.625	4363.479	-118.64
17280	221.5	265.8	53.160	5252.753	-5199.593	35.625	5235.218	-142.54
23040	23040 250.1		60.024	7003.670	-6943.646	35.625	6979.271	-190.35
28800	276.4	331.7	66.336	8754.588	-8688.252	35.625	8723.877	-238.18
36000	306.9	368.3	73.656	10943.235	-10869.579	35.625	10905.204	-297.98

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 188295, Northing: 73497,

	Inte	rval						Years								
DURATION	6months,	lyear,	2,	З,	4,	5,	10,	20,	30,	50,	75 ,	100,	150,	200,	250,	500,
5 mins	3.0,	4.2,	4.8,	5.7,	6.4,	6.8,	8.4,	10.2,	11.3,	12.9,	14.3,	15.4,	17.1,	18.4,	19.5,	N/A ,
10 mins	4.2,	5.8,	6.7,	8.0,	8.9,	9.5,	11.7,	14.1,	15.8,	18.0,	20.0,	21.5,	23.9,	25.7,	27.2,	N/A ,
15 mins	4.9,	6.9,	7.9,	9.4,	10.4,	11.2,	13.8,	16.6,	18.5,	21.2,	23.5,	25.3,	28.1,	30.2,	32.0,	N/A ,
30 mins	6.5,	9.0,	10.3,	12.1,	13.4,	14.4,	17.6,	21.1,	23.4,	26.6,	29.4,	31.6,	34.9,	37.5,	39.6,	N/A ,
1 hours	8.7,	11.7,	13.3,	15.7,	17.3,	18.5,	22.4,	26.7,	29.5,	33.4,	36.8,	39.4,	43.4,	46.4,	49.0,	N/A ,
2 hours	11.5,	15.4,	17.4,	20.3,	22.3,	23.8,	28.6,	33.8,	37.2,	41.9,	46.0,	49.2,	53.9,	57.6,	60.6,	N/A ,
3 hours	13.5,	18.0,	20.3,	23.6,	25.8,	27.5,	32.9,	38.9,	42.7,	47.9,	52.5,	56.0,	61.2,	65.3,	68.6,	N/A ,
4 hours	15.2,	20.1,	22.6,	26.3,	28.7,	30.6,	36.4,	42.9,	47.0,	52.7,	57.6 ,	61.3,	67.0,	71.4,	74.9,	N/A ,
6 hours	17.9,	23.5,	26.4,	30.6,	33.3,	35.4,	42.0,	49.2,	53.8,	60.2,	65.7 ,	69.8,	76.1,	80.9,	84.9,	N/A ,
9 hours	21.1,	27.5,	30.8,	35.5,	38.6,	41.0,	48.5,	56.6,	61.7,	68.8,	74.9,	79.5,	86.5,	91.8,	96.1,	N/A ,
12 hours	23.7,	30.8,	34.4,	39.6,	42.9,	45.5,	53.6,	62.4,	68.0,	75.6,	82.2,	87.2,	94.7,	100.4,	105.0,	N/A ,
18 hours	28.0,	36.0,	40.1,	46.0,	49.8,	52.7,	61.9,	71.7,	77.9,	86.4,	93.7 ,	99.2,	107.6,	113.9,	119.0,	N/A ,
24 hours	31.4,	40.3,	44.8,	51.2,	55.4,	58.5,	68.5,	79.1,	85.8,	95.0,	102.9,	108.8,	117.7,	124.5,	130.0,	148.7,
2 days	40.3,	50.6,	55.7,	62.9,	67.5 ,	71.0,	81.9,	93.4,	100.6,	110.3,	118.6,	124.8,	134.1,	141.1,	146.8,	165.9 ,
3 days	47.7,	59.0,	64.6,	72.5,	77.5,	81.3,	93.0,	105.2,	112.8,	123.1,	131.8,	138.3,	147.9,	155.2,	161.1,	180.7,
4 days	54.3,	66.5,	72.5,	80.9,	86.3,	90.3,	102.7,	115.6,	123.6,	134.3,	143.4,	150.1,	160.2,	167.7,	173.7,	193.9,
6 days	66.0,	79.8,	86.6,	95.9,	101.8,	106.3,	119.8,	133.9,	142.5,	154.0,	163.7,	170.9,	181.6,	189.5,	195.9,	217.2,
8 days	76.5,	91.8,	99.1,	109.2,	115.7,	120.4,	135.0,	150.0,	159.2,	171.4,	181.7,	189.3,	200.5,	208.8,	215.5,	237.7,
10 days	86.4,	102.8,	110.7,	121.5,	128.4,	133.5,	148.9,	164.8,	174.5,	187.3,	198.0,	206.0,	217.7,	226.4,	233.3,	256.3,
12 days	95.7,	113.2,	121.5,	133.1,	140.3,	145.7,	161.9,	178.6,	188.7,	202.1,	213.3,	221.5,	233.7,	242.7,	249.9,	273.6,
16 days	113.2,	132.7,	141.9,	154.5,	162.5,	168.3,	186.1,	204.0,	215.0,	229.3,	241.3,	250.1,	263.1,	272.6,	280.3,	305.4,
20 days	129.6,	150.9,	160.9,	174.5,	183.1,	189.4,	208.4,	227.6,	239.2,	254.4,	267.1,	276.4,	290.0,	300.1,	308.1,	334.4,
25 days	149.2,	172.4,	183.3,	198.1,	207.3,	214.1,	234.5,	255.0,	267.4,	283.6,	297.0,	306.9,	321.3,	331.9,	340.3,	367.9,
NOTES:																

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

Appendix D ATTENUATION SYSTEM DETAILS

Distillery Lane Apartments Project No.: C1058 Attenuation 100-year Calculation: ABN Checked By: JMcB 22/01/2024

Project:

Calcs By:

Date:

Site Location:	Midleton		
Design Storm Return Period:	100 years		
Climate Change Factor:	20 %		
Soil Type:	3		
Total Site Area:	0.110 ha		
Hardstand Area:	0.059 ha	@	100% Impervious
Softstand Area:	0.05 ha	@	0% pervious
Effective Impermeable Area:	0.059 ha		

Allowable Outflow	Calculate
IH124: QBAR = 0.00108 x AREA ^{0.89} x SAAR ^{1.17} x SOIL	2.17
AREA:	0.0006 km ²
SAAR:	1306.5 mm
SOIL:	0.37
QBAR/ha	5.96 l/s/ha
Allowable Outflow	0.66 l/s

Storage	e required	=		34	m³				
Duration	Rainfall 100-Year	Rainfall 100- Year with CCF	Intensity	Discharge (Q = 2.71iA)	Proposed Runoff	Contiguous Land Runoff	Total Runoff	Allowable Outflow	Storage Required
(min)	(mm)	(mm)	(mm/hr)	(I/s)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)
2	0.0	0.0	0.0	0	0	0	0	0	0
5	15.4	18.5	221.8	35	11	0	11	0	10
10	21.5	25.8	154.8	25	15	0	15	0	14
15	25.3	30.4	121.4	19	17	0	17	1	17
30	31.6	37.9	75.8	12	22	0	22	1	21
60	39.4	47.3	47.3	8	27	0	27	2	25
120	49.2	59.0	29.5	5	34	0	34	5	29
180	56.0	67.2	22.4	4	39	0	39	7	32
240	61.3	73.6	18.4	3	42	0	42	9	33
360	69.8	83.8	14.0	2	48	0	48	14	34
540	79.5	95.4	10.6	2	55	0	55	21	34
720	87.2	104.6	8.7	1	60	0	60	28	32
1080	99.2	119.0	6.6	1	69	0	69	42	26
1440	108.8	130.6	5.4	1	75	0	75	57	18
2880	124.8	149.8	3.1	0	86	0	86	113	-27
4320	138.3	166.0	2.3	0	96	0	96	170	-74
5760	150.1	180.1	1.9	0	104	0	104	227	-123
8640	170.9	205.1	1.4	0	118	0	118	340	-222
11520	189.3	227.2	1.2	0	131	0	131	453	-323
14400	206.0	247.2	1.0	0	142	0	142	567	-424
17280	221.5	265.8	0.9	0	153	0	153	680	-527
23040	250.1	300.1	0.8	0	173	0	173	907	-734
28800	276.4	331.7	0.7	0	191	0	191	1133	-942
36000	306.9	368.3	0.6	0	212	0	212	1417	-1205

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 188295, Northing: 73497,

	Inte	rval						Years								
DURATION	6months,	lyear,	2,	З,	4,	5,	10,	20,	30,	50,	75 ,	100,	150,	200,	250,	500,
5 mins	3.0,	4.2,	4.8,	5.7,	6.4,	6.8,	8.4,	10.2,	11.3,	12.9,	14.3,	15.4,	17.1,	18.4,	19.5,	N/A ,
10 mins	4.2,	5.8,	6.7,	8.0,	8.9,	9.5,	11.7,	14.1,	15.8,	18.0,	20.0,	21.5,	23.9,	25.7,	27.2,	N/A ,
15 mins	4.9,	6.9,	7.9,	9.4,	10.4,	11.2,	13.8,	16.6,	18.5,	21.2,	23.5,	25.3,	28.1,	30.2,	32.0,	N/A ,
30 mins	6.5,	9.0,	10.3,	12.1,	13.4,	14.4,	17.6,	21.1,	23.4,	26.6,	29.4,	31.6,	34.9,	37.5,	39.6,	N/A ,
1 hours	8.7,	11.7,	13.3,	15.7,	17.3,	18.5,	22.4,	26.7,	29.5,	33.4,	36.8,	39.4,	43.4,	46.4,	49.0,	N/A ,
2 hours	11.5,	15.4,	17.4,	20.3,	22.3,	23.8,	28.6,	33.8,	37.2,	41.9,	46.0,	49.2,	53.9,	57.6,	60.6,	N/A ,
3 hours	13.5,	18.0,	20.3,	23.6,	25.8,	27.5,	32.9,	38.9,	42.7,	47.9,	52.5,	56.0,	61.2,	65.3,	68.6,	N/A ,
4 hours	15.2,	20.1,	22.6,	26.3,	28.7,	30.6,	36.4,	42.9,	47.0,	52.7,	57.6 ,	61.3,	67.0,	71.4,	74.9,	N/A ,
6 hours	17.9,	23.5,	26.4,	30.6,	33.3,	35.4,	42.0,	49.2,	53.8,	60.2,	65.7 ,	69.8,	76.1,	80.9,	84.9,	N/A ,
9 hours	21.1,	27.5,	30.8,	35.5,	38.6,	41.0,	48.5,	56.6,	61.7,	68.8,	74.9,	79.5,	86.5,	91.8,	96.1,	N/A ,
12 hours	23.7,	30.8,	34.4,	39.6,	42.9,	45.5,	53.6,	62.4,	68.0,	75.6,	82.2,	87.2,	94.7,	100.4,	105.0,	N/A ,
18 hours	28.0,	36.0,	40.1,	46.0,	49.8,	52.7,	61.9,	71.7,	77.9,	86.4,	93.7 ,	99.2,	107.6,	113.9,	119.0,	N/A ,
24 hours	31.4,	40.3,	44.8,	51.2,	55.4,	58.5,	68.5,	79.1,	85.8,	95.0,	102.9,	108.8,	117.7,	124.5,	130.0,	148.7,
2 days	40.3,	50.6,	55.7,	62.9,	67.5 ,	71.0,	81.9,	93.4,	100.6,	110.3,	118.6,	124.8,	134.1,	141.1,	146.8,	165.9 ,
3 days	47.7,	59.0,	64.6,	72.5,	77.5,	81.3,	93.0,	105.2,	112.8,	123.1,	131.8,	138.3,	147.9,	155.2,	161.1,	180.7,
4 days	54.3,	66.5,	72.5,	80.9,	86.3,	90.3,	102.7,	115.6,	123.6,	134.3,	143.4,	150.1,	160.2,	167.7,	173.7,	193.9,
6 days	66.0,	79.8,	86.6,	95.9,	101.8,	106.3,	119.8,	133.9,	142.5,	154.0,	163.7,	170.9,	181.6,	189.5,	195.9,	217.2,
8 days	76.5,	91.8,	99.1,	109.2,	115.7,	120.4,	135.0,	150.0,	159.2,	171.4,	181.7,	189.3,	200.5,	208.8,	215.5,	237.7,
10 days	86.4,	102.8,	110.7,	121.5,	128.4,	133.5,	148.9,	164.8,	174.5,	187.3,	198.0,	206.0,	217.7,	226.4,	233.3,	256.3,
12 days	95.7,	113.2,	121.5,	133.1,	140.3,	145.7,	161.9,	178.6,	188.7,	202.1,	213.3,	221.5,	233.7,	242.7,	249.9,	273.6,
16 days	113.2,	132.7,	141.9,	154.5,	162.5,	168.3,	186.1,	204.0,	215.0,	229.3,	241.3,	250.1,	263.1,	272.6,	280.3,	305.4,
20 days	129.6,	150.9,	160.9,	174.5,	183.1,	189.4,	208.4,	227.6,	239.2,	254.4,	267.1,	276.4,	290.0,	300.1,	308.1,	334.4,
25 days	149.2,	172.4,	183.3,	198.1,	207.3,	214.1,	234.5,	255.0,	267.4,	283.6,	297.0,	306.9,	321.3,	331.9,	340.3,	367.9,
NOTES:																

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

- RAISED GROUND FLOOR LEVEL - SWALE COLLECT RUNOFF FROM HARD SURFACE WITH FILTER STRIP FOR PRE-TREATMENT (NO NEED FOR KERBS AND GULLIES) + DRAIN PATHS VIA FILTER DRAIN - PROVISION OF VEGETATED SWALES (CONVEYANCE FLOODING FROM THE SWALE

TABLE 4

CORK COUNTY COUNCIL SUDS SELECTION HIERARCHY SHEET FOR LARGE-SCALE DEVELOPMENT AND AGRICULTURAL DEVELOPMENT

	DAGRICOLIORAL			.
SuDS Measures	Measures to be used on site	Rational for selecting / not selecting measure	Area of feature (m ²)	Attenuation volume of feature (m ³) (see No. 8)
Source Control				
Providing storage at source	ce			
Swales	YES	SUFFICIENT SPACE AVAILABLE	APPROX. 172m ²	APPROX. 42m ³
Integrated constructed	VES	MITIGATE SURFACE WATER RUNOFF		
tree pits	125			
Rainwater Butts	NO	INSUFFICIENT SPACE AVAILABLE AS B BOUNDARY WALLS	UILDING IS CLOSE TO	
Downpipe Planters	YES	SUFFICIENT SPACE AVAILABLE AT ONE LOCATION ALONG THE RAMP	DOWNPIPE	
Rainwater Harvesting	NO	NOT VIABLE DUE TO SMALL AREA OF ROOF		
Soakaways	NO	INSUFFICIENT DUE TO VULERABILITY GROUNDWATER TABLE AND KARSTIC	DF BEDROCK	
Infiltration trenches	NO	INSUFFICIENT DUE TO VULERABILITY (GROUNDWATER TABLE AND KARSTIC	DF BEDROCK	
Permeable pavement	YES	SUFFICIENT WITH SWALE AS A		
(Grasscrete, Block	125	SURFACE WATER CAN BE		
Paving, Porous Asphalt		PERVIOUS PAVEMENT VIA FILTER		
etc)		DRAINS		
Green Roofs	NO	NOT VIABLE DUE TO SMALL AREA OF ROOF		
Green wall	NO	NOT FEASIBLE DUE TO PROXIMITY TO BOUNDARY WALLS		
Filter strips	YES	REQUIRED AS PRE-TREATMENT OF RE FROM HARD SURFACE INTO SWALE	JNOFF	
Bio-retention	YES	BIO RETENTION TREE PITS		
systems/Raingardens		INOLOBED		
Blue Roofs	NO	NOT VIABLE DUE TO SMALL AREA OF ROOF		
Filter Drain	YES	SUFFICIENT FOR WATER TO BE DISCH	ARGED VENT	
Site Control				
Detention Basins	NO	PROPOSED SWALE FUNCTIONS AS DETENTION BASIN		
Retention basins	NO	NOT SUFFICIENT DUE TO GROUNDWA TABLE VULNERABILITY	TER	
Regional Control				
Ponds	NO	NOT FEASIBLE		
Wetlands	NO	NOT FEASIBLE		
Other				
Petrol/Oil	NO	NOT REQUIRED AS THERE WILL BE		
interceptor/Grit Trap	NO	SITE BOUNDARIES		
Attenuation tank – only	VES	REDUCE OUTFLOW TO GREEN FIELD		
as a last resort where	TES	RETURN PERIOD AS OUTLINED IN		
other measures are not		REPORT		
feasible				
Oversized pipes- only	NO	ATTENUATION TANK UTILISED AS		
as a last resort where		ALTERNATIVE MEASURE		
other measures are not				
feasible				
Other				

Notes:

Cork County Council is seeking above-ground solutions rather than tanks or oversized pipes. Above ground flows through swales, basins etc. are encouraged.

- 1. Demonstrate SuDS system will have sufficient Pollutant removal efficiency in accordance with CIRIA Suds Manual C753.
- 2. Basins and swale sides should be no steeper than 1:4 and no deeper than 1.2m in the 1%AEP.
- 3. Culverting should be avoided.
- 4. De-culverting is encouraged.
- 5. Please submit evidence of infiltration rates.
- 6. To account for climate change in the design of the drainage system rainfall intensities should be factored up by 20%.
- 7. The applicant must provide SuDS checklists in accordance with the Appendix B of the CIRIA Suds manual C753.
- 8. The applicant must provide discharge rate applied with supporting calculations.

Appendix E FLOOD MAPS

Legend:

1% Fluvial AEP 0.1% Fluvial AEP Storm Babet Estimated Flood Extent

WORKING DRAFT

Rev:	Note:	Date:								
ARUP										
Map: Midleton Storm Babet (18/10/2023) Estimated Flood Extents										
Map type:	Fluvial Flood Ext	ents								
Source:	Midleton Flood R	elief Scheme								
Scenario:	Storm Babet									
Drawn By:	CB Da	te: 20/12/2023								
Checked By:	KB Da	ate: 20/12/2023								
Approved By:	BO'B Da	ate: 20/12/2023								
Drawing No:	1									
Map Series:	Page 3 of 9									
Drawing Scale: 1:5,000 @ A3										

Cork Office

North Point House North Point Business Park New Mallow Road Cork T23 AT2P T: +353 21 235 5816 E: cork@ocsc.ie | W: www.ocsc.ie

Civil | Structural | Mechanical | Electrical | Sustainability | Environmental